Dual High-Voltage Trench MOS Barrier Schottky Rectifier

Ultra Low $\mathrm{V}_{\mathrm{F}}=0.372 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}$
Major Ratings and Characteristics

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 25 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{RRM}}$	100 V
$\mathrm{I}_{\mathrm{FSM}}$	250 A
$\mathrm{~V}_{\mathrm{F}}$ at $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~A}$	0.64 V
$\mathrm{~T}_{\mathrm{J}}$ max.	$150^{\circ} \mathrm{C}$

Features

- Trench MOS Schottky Technology
- Low forward voltage drop, low power losses
- High efficiency operation
- Low thermal resistance
- Solder Dip $260^{\circ} \mathrm{C}, 40$ seconds

Typical Applications

For use in high frequency inverters, switching power supplies, freewheeling diodes, Oring diode, dc-to-dc converters and reverse battery protection.

TO-247AD (TO-3P)

Mechanical Data

Case: TO-247AD (TO-3P)
Epoxy meets UL 94V-0 flammability rating
Terminals: Matte tin plated leads, solderable per J-STD-002B and JESD22-B102D
E3 suffix for commercial grade
Polarity: As marked
Mounting Torque: 10 in-lbs Maximum

Maximum Ratings

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	V50100P	Unit
Maximum repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	100	V
RMS reverse voltage for sine wave	$\mathrm{V}_{\text {RMS }}$	70	V
DC blocking voltage	V_{R}	100	V
Maximum average forward rectified current (see Fig. 1) per device per leg	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	A
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load\quad per leg	$\mathrm{I}_{\text {FSM }}$	250	A
Peak repetitive reverse current per leg at $t_{p}=2 \mu \mathrm{~s}, 1 \mathrm{kHz}$	$\mathrm{I}_{\text {RRM }}$	1.0	A
Operating junction and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{STG}}$	-20 to +150	${ }^{\circ} \mathrm{C}$

Vishay General Semiconductor

Electrical Characteristics

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Test condition		Symbol	Typ.	Max.	Unit
Breakdown voltage	at $\mathrm{I}_{\mathrm{R}}=1.0 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {(BR) }}$	100 (minimum)	-	V
Instantaneous forward voltage ${ }^{(1)}$ per leg	$\text { at } \begin{aligned} \mathrm{I}_{\mathrm{F}} & =5 \mathrm{~A} \\ \mathrm{I}_{\mathrm{F}} & =10 \mathrm{~A} \\ \mathrm{I}_{\mathrm{F}} & =20 \mathrm{~A} \\ \mathrm{I}_{\mathrm{F}} & =25 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	V_{F}	$\begin{aligned} & \hline 0.463 \\ & 0.535 \\ & 0.664 \\ & 0.700 \end{aligned}$	0.78	V
	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		$\begin{aligned} & 0.375 \\ & 0.445 \\ & 0.605 \\ & 0.635 \end{aligned}$	0.70	
Reverse current at rated $\mathrm{V}_{\mathrm{RM}}{ }^{(1)}$ per leg	at $\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$	I_{R}	$\begin{gathered} 13.7 \\ 8.4 \end{gathered}$	$\begin{gathered} 500 \\ 15 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
	at $\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 69.6 \\ & 22.5 \end{aligned}$	$\begin{gathered} 1000 \\ 45 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$

Thermal Characteristics

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	V50100P	Unit
Typical thermal resistance per leg	$\mathrm{R}_{\text {日JC }}$	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:
(1) Pulse test: 300μ s pulse width, 1% duty cycle

Ratings and Characteristics Curves

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 1. Forward Current Derating Curve

Figure 2. Maximum Non-Repetitive Peak Forward Surge Current
\qquad
Vishay General Semiconductor

Figure 3. Typical Instantaneous Forward Characteristics Per Leg

Figure 4. Typical Reverse Characteristics

Figure 5. Typical Junction Capacitance

Figure 6. Typical Transient Thermal Impedance

Package outline dimensions in inches (millimeters)

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

